Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119699, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070426

RESUMO

Unchecked dye effluent discharge poses escalating environmental and economic concerns, especially in developing nations. While dyes are well-recognized water pollutants, the mechanisms of their environmental spread are least understood. Therefore, the present study examines the partitioning of Acid Orange 7 (AO7) and Crystal Violet (CV) dyes using water-sediment microcosms and reports that native microbes significantly affect AO7 decolorization and transfer. Both dyes transition from infused to pristine matrices, reaching equilibrium in a fortnight. While microbes influence CV partitioning, their role in decolorization is minimal, emphasizing their varied impact on the environmental fate of dyes. Metagenomic analyses reveal contrasting microbial composition between control and AO7-infused samples. Control water samples displayed a dominance of Proteobacteria (62%), Firmicutes (24%), and Bacteroidetes (9%). However, AO7 exposure led to Proteobacteria reducing to 57% and Bacteroidetes to 3%, with Firmicutes increasing to 34%. Sediment samples, primarily comprising Firmicutes (47%) and Proteobacteria (39%), shifted post-AO7 exposure: Proteobacteria increased to 53%, and Firmicutes dropped to 38%. At the genus level, water samples dominated by Niveispirillum (34%) declined after AO7 exposure, while Bacillus and Pseudomonas increased. Notably, Serratia and Sphingomonas, known for azo dye degradation, rose post-exposure, hinting at their role in AO7 decolorization. Conversely, sediment samples showed a decrease in the growth of Bacillus and an increase in that of Pseudomonas and Serratia. These findings emphasize the significant role of microbial communities in determining the environmental fate of dyes, providing insights on its environmental implications and management.


Assuntos
Benzenossulfonatos , Violeta Genciana , Microbiota , Corantes/química , Compostos Azo/química
2.
Biomedicines ; 11(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37238940

RESUMO

(1) Background: Skeletal muscle atrophy is a common and debilitating condition associated with disease, bed rest, and inactivity. We aimed to investigate the effect of atenolol (ATN) on cast immobilization (IM)-induced skeletal muscle loss. (2) Methods: Eighteen male albino Wistar rats were divided into three groups: a control group, an IM group (14 days), and an IM+ATN group (10 mg/kg, orally for 14 days). After the last dose of atenolol, forced swimming test, rotarod test, and footprint analysis were performed, and skeletal muscle loss was determined. Animals were then sacrificed. Serum and gastrocnemius (GN) muscles were then collected, serum creatinine, GN muscle antioxidant, and oxidative stress levels were determined, and histopathology and 1H NMR profiling of serum metabolites were performed. (3) Results: Atenolol significantly prevented immobilization-induced changes in creatinine, antioxidant, and oxidative stress levels. Furthermore, GN muscle histology results showed that atenolol significantly increased cross-sectional muscle area and Feret's diameter. Metabolomics profiling showed that glutamine-to-glucose ratio and pyruvate, succinate, valine, citrate, leucine, isoleucine, phenylalanine, acetone, serine, and 3-hydroxybutyrate levels were significantly higher, that alanine and proline levels were significantly lower in the IM group than in the control group, and that atenolol administration suppressed these metabolite changes. (4) Conclusions: Atenolol reduced immobilization-induced skeletal muscle wasting and might protect against the deleterious effects of prolonged bed rest.

3.
Cureus ; 15(1): e34245, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36855484

RESUMO

To date, cancer continues to be one of the biggest challenges for medical science. Nanotechnology has enabled us to overcome some of the limitations of conventional treatment in lung cancer therapeutics. Recently, US Food and Drug Administration (FDA) has approved certain nanomedicines for clinical administration against lung cancer. This article presents a narrative review of approved nanomedicines in lung cancer with a special focus on the results of recently concluded and ongoing clinical trials. The limitations associated with using nanomaterials as anti-lung cancer therapeutic agents and the possible mechanisms to overcome these limitations are also discussed.

4.
Sci Total Environ ; 868: 161717, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36682568

RESUMO

In Himalayas, new glacial lake formation and expansion of existing glacial lakes have occurred as a consequence of the increasing temperature and glacier recession. These lakes have the potential to release catastrophic volumes of water and trigger a glacial lake outburst flood (GLOF). GLOFs can cause devastating downstream impacts including loss of lives, damage to infrastructure, and economic loss. The risk associated with GLOFs is evident in the case of the Mochowar and the Shisper glaciers of the Hunza valley in the Karakoram ranges. The present study is divided in two parts: 1) investigation of the recent GLOF event from the Shisper glacier ice-dammed lake on 7th May 2022. 2) identification of an overdeepening site for future lake formation at the Mochowar glacier and its future GLOF susceptibility; We used the Himalayan Glacier Thickness Mapper (HIGTHIM) to calculate the thickness of Mochowar glacier and identify an overdeepening site at its terminus. This site could host a glacial lake of area 0.22 km2 and a mean depth of 58.97 m that can release a potential flood volume leading to cascading effects with the Shisper ice-dammed lake that further increases the GLOF susceptibility. The GLOF susceptibility of this future lake was determined to be high based on a multi-criterion decision analysis. The recent GLOF event of 7th May 2022 occurred from the Shisper glacier ice-dammed lake. We applied a 2D hydrodynamic model for investigating this GLOF episode and estimated a release volume of 6.23 × 106 m3, with a modelled peak discharge of approximately 1505 m3 s-1.

5.
Sci Total Environ ; 854: 158791, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108841

RESUMO

Antibiotics as a selection pressure driving the evolution of soil microbial communities is not well understood. Since microbial functions govern ecosystem services, an ecological framework is required to understand and predict antibiotic-induced functional and structural changes in microbial communities. Therefore, metagenomic studies explaining the impacts of antibiotics on soil microbial communities were mined, and alterations in microbial taxa were analyzed through an ecological lens using Grimes's Competitor-Stress tolerator-Ruderal (CSR) model. We propose considering antibiotics as the primary abiotic factor mentioned in the CSR model and classifying non-susceptible microbial taxa as degraders, resistant, and resilient groups analogous to competitors, stress tolerators, and ruderal strategists, respectively. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were among the phyla harboring most members with antibiotic-resistant groups. However, some antibiotic-resistant microbes in these phyla could not only tolerate but also subsist solely on antibiotics, while others degraded antibiotics as a part of secondary metabolism. Irrespective of their taxonomic affiliation, microbes with each life strategy displayed similar phenotypic characteristics. Therefore, it is recommended to consider microbial functional traits associated with each life strategy while analyzing the ecological impacts of antibiotics. Also, potential ecological crises posed by antibiotics through changes in microbial community and ecosystem functions were visualized. Applying ecological theory to understand and predict antibiotics-induced changes in microbial communities will also provide better insight into microbial behavior in the background of emerging contaminants and help develop a robust ecological classification system of microbes.


Assuntos
Antibacterianos , Microbiota , Solo/química , Microbiologia do Solo , Bactérias
6.
ISME Commun ; 2(1): 83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407791

RESUMO

Phototrophic communities of autotrophic microalgae and heterotrophic bacteria perform complex tasks of nutrient acquisition and tackling environmental stress but remain underexplored as a basis for the bioremediation of emerging pollutants. In industrial monoculture designs, poor iron uptake by microalgae limits their productivity and biotechnological efficacy. Iron supplementation is expensive and ineffective because iron remains insoluble in an aqueous medium and is biologically unavailable. However, microalgae develop complex interkingdom associations with siderophore-producing bacteria that help solubilize iron and increase its bioavailability. Using dye degradation as a model, we combined environmental isolations and synthetic ecology as a workflow to design a simplified microbial community based on iron and carbon exchange. We established a mutualism between the previously non-associated alga Chlorella sorokiniana and siderophore-producing bacterium Ralstonia pickettii. Siderophore-mediated increase in iron bioavailability alleviated Fe stress for algae and increased the reductive iron uptake mechanism and bioremediation potential. In exchange, C. sorokiniana produced galactose, glucose, and mannose as major extracellular monosaccharides, supporting bacterial growth. We propose that extracellular iron reduction by ferrireductase is crucial for azoreductase-mediated dye degradation in microalgae. These results demonstrate that iron bioavailability, often overlooked in cultivation, governs microalgal growth, enzymatic processes, and bioremediation potential. Our results suggest that phototrophic communities with an active association for iron and carbon exchange have the potential to overcome challenges associated with micronutrient availability, while scaling up bioremediation designs.

7.
Sci Total Environ ; 841: 156593, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35690218

RESUMO

The high prevalence and persistence of microplastics (MPs) in pristine habitats along with their accumulation across environmental compartments globally, has become a matter of grave concern. The resilience conferred to MPs using the material engineering approaches for outperforming other materials has become key to the challenge that they now represent. The characteristics that make MPs hazardous are their micro to nano scale dimensions, surface varied wettability and often hydrophobicity, leading to non-biodegradability. In addition, MPs exhibit a strong tendency to bind to other contaminants along with the ability to sustain extreme chemical conditions thus increasing their residence time in the environment. Adsorption of these co-contaminants leads to modification in toxicity varying from additive, synergistic, and sometimes antagonistic, having consequences on flora, fauna, and ultimately the end of the food chain, human health. The resulting environmental fate and associated risks of MPs, therefore greatly depend upon their complex interactions with the co-contaminants and the nature of the environment in which they reside. Net outcomes of such complex interactions vary with core characteristics of MPs, the properties of co-contaminants and the abiotic factors, and are required to be better understood to minimize the inherent risks. Toxicity assays addressing these concerns should be ecologically relevant, assessing the impacts at different levels of biological organization to develop an environmental perspective. This review analyzed and evaluated 171 studies to present research status on MP toxicity. This analysis supported the identification and development of research gaps and recommended priority areas of research, accounting for disproportionate risks faced by different countries. An ecological perspective is also developed on the environmental toxicity of contaminated MPs in the light of multi-variant stressors and directions are provided to conduct an ecologically relevant risk assessment. The presented analyses will also serve as a foundation for developing environmentally appropriate remediation methods and evaluation frameworks.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Ecossistema , Monitoramento Ambiental , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 826: 154038, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35202698

RESUMO

Microbial fuel cells (MFCs) exhibit tremendous potential in the sustainable management of dye wastewater via degrading azo dyes while generating electricity. The past decade has witnessed advances in MFC configurations and materials; however, comprehensive analyses of design and material and its association with dye degradation and electricity generation are required for their industrial application. MFC models with high efficiency of dye decolorization (96-100%) and a wide variation in power generation (29.4-940 mW/m2) have been reported. However, only 28 out of 104 studies analyzed dye mineralization - a prerequisite to obviate dye toxicity. Consequently, the current review aims to provide an in-depth analysis of MFCs potential in dye degradation and mineralization and evaluates materials and designs as crucial factors. Also, structural and operation parameters critical to large-scale applicability and complete mineralization of azo dye were evaluated. Choice of materials, i.e., bacteria, anode, cathode, cathode catalyst, membrane, and substrate and their effects on power density and dye decolorization efficiency presented in review will help in economic feasibility and MFCs scalability to develop a self-sustainable solution for treating azo dye wastewater.


Assuntos
Fontes de Energia Bioelétrica , Compostos Azo/química , Eletricidade , Eletrodos , Águas Residuárias/química
9.
Environ Res ; 184: 109253, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32145548

RESUMO

The practice of hair dyeing is a rapidly expanding industry on a global scale; however, it has become a major concern for Asian countries because they have been undergoing rapid transformations of their environment and lifestyles. While the socio-economic benefits and impacts of this globalization trend are widely understood, the environmental effects are largely unknown. In particular, commonly available oxidative dyes potentially pose specific environmental risks due to their use of a toxic aromatic amine p-Phenylenediamine (PPD). In investigating the environmental impacts of PPD chemicals, we first provide context to the study by setting out the socio-psychological drivers to industrial expansion in Asian countries along with an overview of research into its effects, to show that its environmental impacts are under-researched. We then investigate the environmental toxicity of PPD by focusing on the role of microbes in metabolizing waste products. Results show that Acinetobacter baumannii EB1 isolated from dye effluent prevents autoxidation of PPD under oxygen-enriched (shaking) or oxygen-deficient (static) conditions representing different environmental settings. Microbes transformed PPD into more toxic metabolites, which then significantly reduced plant growth, thereby having a direct bearing on ecosystem services. Based on the findings, we argue that stricter regulatory controls on hair dye wastewater are necessary, particularly in newly industrialising Asian countries where the expansion of commercial practice is most prevalent.


Assuntos
Tinturas para Cabelo , Estilo de Vida , Águas Residuárias , Poluentes Químicos da Água , Ásia , Ecossistema , Tinturas para Cabelo/toxicidade , Humanos , Fenilenodiaminas/toxicidade , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
10.
Ecotoxicol Environ Saf ; 148: 528-537, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29125956

RESUMO

Microbes have potential to convert non-toxic azo dyes into hazardous products in the environment. However, the role of microbes in biotransforming such presumably non-toxic dyes has not been given proper attention, thereby, questions the environmental safety of such compounds. The present study assessed salinity driven microbial degradation of an unregulated azo dye, Acid orange 7 (AO7), under moderately halophilic conditions of textile effluent. The halophilic microbial consortium from effluent decolorized ~97% AO7 (50-500mgL-1). The consortium efficiently decolorized the dye at different pH (5-8) and salinity (5-18% NaCl). The 16S rRNA sequence analyses confirmed the presence of Halomonas and Escherichia in the consortium. The FTIR and GC-MS analyses suggested microbial consortium degrade AO7 following symmetric and asymmetric cleavage and yield carcinogenic/mutagenic aromatic byproducts viz. aniline, 1-amino-2-naphthol, naphthalene, and phenyldiazene. In contrast to AO7, the biodegraded products caused molecular, cellular and organism level toxicity. The degraded products significantly reduced: radicle length in root elongation assay; shoot length/biomass in plant growth assays; and caused chromosomal abnormalities and reduced mitotic index in Allium cepa bioassay. We demonstrated that under saline conditions of textile effluent, halophilic microbes convert a presumably non-toxic azo dye into hazardous products. The study calls to review the current toxicity classification of azo dyes and develop environmentally sound regulatory policies by incorporating the role of environmental factors in governing dye toxicity, for environmental safety.


Assuntos
Compostos Azo/toxicidade , Benzenossulfonatos/toxicidade , Corantes/toxicidade , Consórcios Microbianos , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Compostos Azo/metabolismo , Benzenossulfonatos/metabolismo , Biodegradação Ambiental , Biotransformação , Corantes/metabolismo , Monitoramento Ambiental/legislação & jurisprudência , Mutagênicos/metabolismo , Indústria Têxtil , Vigna/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
11.
Chemosphere ; 155: 591-605, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27155475

RESUMO

Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of environmental processes has been developed. Based on past 3 decades of research on microbial dye detoxification, the current state of knowledge has been analyzed, environmental relevance of these studies was ascertained, research gaps in microbe-mediated azo dye detoxification have been identified and a research framework emphasizing a better understanding of complex interactions between dye-microbe and environmental processes has been proposed. It provides directions for undertaking environmentally sound microbial dye detoxification research.


Assuntos
Compostos Azo/química , Bactérias/metabolismo , Corantes/química , Poluentes Ambientais/química , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes/toxicidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...